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Genetic algorithms are a subclass of evolutionary
algorithms. A Genetic Algorithm (GA) is defined by
Goldberg (1989) as a ‘search algorithm based on the
mechanics of natural selection and natural genetics’,
but another definition, more focused on its way of
functioning, is provided by John R. Koza in his 1992
book, Genetic Programming: On the Programming of
Computers by Means of Natural Selection:

‘The GA is a highly parallel mathematical algorithm
that transforms a set (population) of individual
mathematical objects [...], each with an associated
fitness value, into a new population (i.e. the next
generation) using operations patterned after the
Darwinian principle of reproduction and survival
of the fittest and after naturally occurring genetic
operations (notably sexual recombination).

In other words, in a random population of potential
solutions, the best individuals are favoured and
combined in order to create better individuals at the
next generation. In the 1980s, genetic algorithms
received an increasing recognition by scientists, and
studies in fields ranging from biology, artificial intel-
ligence, engineering and business to social sciences
began to appear. At present, GAs provide a robust
and flexible tool to solve complex problems, including
air-trafic  programming, weather forecasts, share
portfolios balance and electronic circuits design, in
which a consolidated analytic way of resolution is
unknown. Moreover, as far as the world of construction
is concerned, GAs are increasingly being used to deal

with the optimization of bridges and large-span struc-
tures, the morphogenesis of shells and membranes,
and the spatial configuration of reciprocal structures.

C.1 Main characteristics

With respect to other traditional optimization and
search procedures, GAs differ in four fundamental
aspects, described by Goldberg (1989):

* GAs search using a ‘population’ of candidate
solutions, and not a unique solution;

* GAs work with a coded version of the parameter
set, and not the parameters themselves;

* GAs are based on stochastic transition rules (they
use randomized operators);

* GAs are blind to auxiliary information; they only
need an objective function (fitness function).

All these characteristics contribute to the typical GA’s
robustness.

C.2 Terminology

The specific terminology for GAs derives from natural
systems as well as from computer science technical
vocabulary. For this reason, it is possible to find in
technical literature the same concept expressed with
two different, but equivalent, terms (see Table C.1).
Many of these terms specifically refer to the world
of natural systems and cannot be found in other
optimization procedures. Examples are terms such
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Meaning Natural systems
genetic codes chromosome
genetic constitution of an individual genotype
observable characteristics of an individual phenotype

basic unit of a genetic code gene

possible settings of a gene allele

the position of a gene in a genetic code locus

Computer science

string

structure

parameter set, solution alternative, point
feature, character, detector

feature value

string position

Table C.1 Comparison of natural and artificial GA terminoclogy

as ‘individual’, which represents a candidate solution
to the evaluated problem, ‘populatior’, indicating a
set of individuals considered at the same iterative
step of the evolutionary process, and ‘generation,
synonymous to iteration, to refer to a specific step
of the algorithm procedure. This is also the case
with the three main operators of GAs — selection,
reproduction and mutation — which are described in
Section C.3.2.

C.3 Elements of a genetic algorithm

As with any systematic approach to search problems,
GAs require two main elements in order for them to
provide an effective and reliable result:

1. A representation scheme, describing each possible
solution (individual) with a set of variables
(chromosome), as well as the limits in which these
variables can operate. This is done by means of
parameterization and the definition of the param-
eters domain.

2. A fitness function, measuring the generated
solutions (individuals) on the basis of a well-
defined performance parameter, and the respective
evaluation criterion.

'The definition of a problem for a GA implementation
requires also several parameters and termination
criteria to control the algorithm. The parameters
include the number of generations, the population
size, the number of parents and various coefficients
that are applied on the GAs operators (selection,
crossover, mutation, elitism). A termination criterion
can be related to the fitness function (the algorithm
can stop once a minimum required fitness value has
been reached), it can be related to the number of

solutions considered, number of generations, or even
calculation time.

C.3.1 Procedure

'The conventional procedure of a GA can be summa-

rized by the following steps:

1. Generate an initial, random population of
individuals, or candidate solutions to the problem.

2. Evaluate the performance (fitness) of each individual.

3. Generate a new population of candidate solutions
applying the following three genetic operators (or
at least the first one):

a. Selection: select best individuals for the repro-
duction to the new population.

b. Crossover or reproduction: recombine genetic
codes of selected individuals, creating new
candidate solutions.

¢. Mutation: apply random mutations to the
genetic codes of new individuals.

4. Repeat steps two and three to evolve the population
over a number of generations, until a satisfactory
result is achieved.

C.3.2 Operators

Successive populations are generated from the
previous population by way of three genetic operators:
the ‘selection” of best individuals, their ‘reproduction’
or ‘crossover’, and ‘mutation’. In order to further
improve the general efficiency of the algorithm, some
other secondary operators could be added to the main
procedure, most commonly the ‘elitism’ operator. It is
worth noting that the various user-defined parameters
controlling these operators will be of great importance
to the efficacy of the algorithm. As yet no universal
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method exists to optimally choose these parameters
and the experience of the user will play a dominant
role in the choice of values for the parameters.

Selection

The selection operator retains individuals from the
previous population. Different methods have been
developed which all employ the fitness values in their
selection, while some methods also incorporate a
degree of randomness. Individuals with higher fitness
generally have a greater probability of making a
contribution to the new generation of individuals.
'The end result of the selection operator is the ‘mating
pool’; it is a list of pairs of individuals which are to be
used in reproduction (and crossover).

Crossover

‘The reproduction or crossover operator acts on the
selected individuals, creating a new population of
individuals. Crossover involves the ‘mating’ of
individuals to produce offspring with characteristics
of its predecessors. The offspring individual is created
by copying part of the genetic code of one parent, and
the rest from the other parent (Fig. C.1). Different
crossover operators perform this operation in diverse
ways, introducing some level of randomness. The
probability of a crossover operation taking place is set
by the user. This operator is traditionally considered
as the ‘core’ of the GA, because it is the main cause of
variation and innovation of candidate solutions.

offspring

Mutation

'The mutation operator performs genetic variations
in chromosomes of the individuals of a population.
The mutation operator is also implemented with a
probability chosen by the user. Similarly, the scale
of the mutation can also be set. Mutation consists
of replacing entries in the chromosome by random
values within the permitted range of the variable. The
mutation rate is usually relatively small compared to
the crossover rate, as is the mutation scale, the relative
number of mutations in the chromosome. While
crossover is generally considered as a constructor
of new candidate solutions, mutation works as a
disruptor of existing configurations; for this reason, it
plays a secondary role with as main purpose avoiding
genetic drift (when all individuals become identical,
evolution is no longer possible).

Elitism

'The ‘elitism’ operator, introduced by Kenneth Alan
De Jong in his 1975 doctoral thesis ‘An analysis of
the behavior of a class of genetic adaptive systems’,
is the most common secondary operator. It works
in addition to the selection method, forcing the
GA to retain a fixed number of best individuals at
each generation in order to save their chromosomes
from destruction due to crossover and/or mutation,
therefore avoiding a maximum performance decrease
during the evolutionary process. Generally, it signifi-
cantly improves the algorithm’s efficiency.

parents

(b)

f topological characterization of the S

I operators

Figure C.1 Simple (a) single-point and (b) two-point crossover operators
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C.4 Multi-objective genetic
algorithms

When we study multiple and contrasting objective
functions, with any search method, we have to consider
the fact that the solutions will not be optimal for
all functions. Therefore, the final result of a multi-
objective search is inherently a set of solutions, not
a single individual. This group of solutions is called
‘trade-off set’, ‘Pareto front’ or ‘non-dominated set’. It
comprises solutions that are said to be not dominated.
The concept of dominance and non-dominance is

defined as follows:

In order for solution A to dominate solution
B, solution A has to outperform, or equal B in
all functions, as well as outperform B in at least
one function. If solution A outperforms or equals
solution B in all objective functions except in one
in which solution B outperforms A, then A and B
are non-dominated solutions.

GAs can easily be adapted to multi-objective search
and optimization thanks to their inherent handling of
multiple potential solutions, thereby leading to various
trade-off designs. Different ways of transforming
a GA into a Multi-Objective Genetic Algorithm
(MOGA) by modifying some of the operators have
been proposed (Deb, 2001). Various MOGAs employ
different genetic operators in order to introduce the
characteristics of multi-objective search and optimi-
zation, but one of the most important modifications in
most MOGAs is done in the selection operator. The
main differences in the selection operator (see Section

C.3.1) are:

*  Pareto-optimality: solutions are not ranked by their
performance in the objective functions directly,
but are ranked by their level of domination in the
population.

* Clustering: how similar is this design to other
designs in the population? Promoting diversity in
the population leads to better exploration of the
design space.

For a full explanation on MOGAs, the reader is
referred to Deb (2001).
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C.5 Application to structural design
and optimization

For structural design and optimization, the use of
GAs is very attractive, for the following reasons:

* The nature of the variables: structural optimization
problems may be characterized by mixed variables
(continuous, discrete, integer and/or categorical).
GAs handle these variations naturally, whereas
gradient-based algorithms, for instance, are mainly
devoted to problems with continuous variables and
differentiable functions.

+ The nature of the functions: as the functions
involved in structural optimization (e.g. the
maximum stress among all elements of a truss)
may be non-differentiable, and sometimes discon-
tinuous, gradient-based techniques are excluded.
Only algorithms requiring only the values of the
functions, and not their derivatives, are applicable.

+ Exploration of the search space: as they work on a
population of solutions instead of a single point (at
each iteration) — even while blind to any specific
knowledge about the problem — GAs are less
likely to be trapped in a local minimum, and effec-
tively find the optimal global value. The schemata
theorem has shown that the way recombination of
individuals is performed allows the algorithm to
explore widely the whole design space. GAs are
thus very well suited for noisy and multi-modal
functions.

C.5.1 Chromosomes

When considering structural problems, the variables
describing each individual, that is, its chromosome,
depend on the type of optimization considered. For
instance, the chromosome can consist of member
sizing, nodal position (shape) or topology variables,
or of some combination of these three types. It can
consist of bit string representation or real-valued
representation, though mutation and crossover
operators are typically a bit more involved for real-
valued representation. The capability to handle
variables of different types at once is one of the great
strengths of GAs as an optimization procedure. GAs

allow, for example, for combining continuous shape
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variables with discrete topology variables in a single
chromosome representation.

Figure C.2 shows a chromosome representation of
the shape and topology variables for a two-dimensional,
four-node structure. Each entry in the chromosome
refers to one of the variables considered. In the
example, the first four entries correspond to the shape

variables x, y,, x, and y,, the coordinates of nodes

2
1 and 2. The remaining entries in the chromosome
correspond to the elements defined by the nodes they
connect. The binary 0/1 topology variables refer to the

existence or non-existence of the element.

C.5.2 Fitness function

Besides the abstract definition of the set of potential
solutions, a measure of the structural performance
(used in step two of the procedure described in
Section C.3.1) must be chosen in order to drive the
optimization process. In single objective optimization,
basic choices could be measures of mass or stiffness.
The maximum vertical displacement of a structure is a
suitable structural parameter to have a raw evaluation
of its structural behaviour. However, analogous results
could be obtained by calculating the fitness function
from other integral parameters of the structure, such
as total strain energy or buckling multiplier.
Furthermore, there may be structural properties
associated with the chromosome that we wish to
know in order to ensure that the structure adheres
to certain structural requirements. For example, the
maximal stresses in the structure should not exceed
a certain limit, ensuring satisfaction of the stress
constraint. In general, violation of the constraints

(= n)

will either be used to augment or penalize the fitness
function, so as to influence the selection of unfeasible
solutions, or eliminate them as candidate designs. The
evaluation of the individual’s fitness often occurs by
way of structural analysis such as the force method
or displacement method (e.g. finite element analysis).
Whatever method of structural analysis, the evalu-
ation will be called at least once per iteration of the
genetic algorithm. It is noted though, that for very
complex problems, alternative methods to evaluate the
objective functions exist; for example, response surface
methods, surrogate modelling. Since the GA itself is
a black-box type procedure, the operators (sclection,
crossover and so on) are not specific to structural
design and optimization.

Further reading

* An Introduction to Genetic Algorithms, Mitchell
(1998). A simple and complete introductory book
to genetic algorithms, implementing the main
concepts of the work and research developed by
Holland, Goldberg and Koza during the last four
decades. It should be used to program a basic GA
procedure, as well as for the development and
tuning of the routines related to the three main
GA operators.

* Genetic Algorithms in Search, Optimization, and
Machine Learning, Goldberg (1989). The initial
reference book on genetic algorithms.

* Multi-Objective Optimization using Fvolutionary
Algorithms, Deb (2001). Widely regarded as the
definitive book in its field.
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Figure C.2 Chromosome representation of a four-node, pin-jointed structure. Entries in the chromosome correspond to
shape variables (coordinates of nodes) and topology variables (existence or non-existence of elements)




